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ABSTRACT

A first-order stochastic difference equation with random

coefficients is shown to have a solution which makes the marginal distribution

of the stationary sequence generated by the equation a convex mixture of

two exponential distributions. This Markovian process should be broadly

applicable in stochastic modelling in operations analysis. Moreover it

is extended quite simply to a mixed exponential process with mixed pth-order

autoregressive and qth-order moving average correlation structure. Coupling

of the processes to model multivariate situations is also discussed.
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1. Introduction

Sequences of independent, exponentially distributed random variables

{E I play a central role in stochastic modelling in operations analysis,
n

either to characterize the times-between-events in homogeneous Poisson arrival

processes or to characterize, for example, time series of successive service

times in a queue or successive response times at a computer terminal. Un-

fortunately both the assumption of independence and/or the assumption of an

exponential distribution can be tenuous in practice. The distributional

assumption has long been relaxed, as in the renewal model for arrival processes,

but independence has been found difficult to relax in simple tractable models.

For instance, the Box-Jenkins or ARMA models,well known in time series analysis,

are mainly suitable for modelling time series with marginal Gaussian distri-

butions and are inappropriate for positive variables, such as response times.

However, a tractable and flexible time series model has recently been intro-

duced by Lawrance (1980), Lawrance and Lewis (1981), but developed only for

time series with exponential marginal distributions. The development here is

to extend this new model into mixed exponential variables. Mixed exponential

variables are overdispersed relative to exponential variables while retaining

their nonmodal distributional aspect. Further, they are often used when data

suggests that exponential assumptions are incorrect.

2. The Model to be Developed

A time series of equally spaced observations will be represented

by the random variables {Xn, n = 0, +1, + 2,...}. We shall be concerned

with the following general model,

X Sn- I w.P. a

Xn n 0 j 8  w.p. l-a (2.1)

1nn + 'VnXn-i (2.2)



where the Vn  are i.i.d. binary variables with P(Vn  1) = 1 - P(V n=O) = a,

and {e. I are assumed to be an i.i.d. sequence. This was the two-parameter
n

model developed in Lawrance and Lewis 1981) for stationary X n's with

exponential marginal distributions, and there called the NEAR(l) model (new

exponential autoregressive of first order); here we develop the special

one-parameter model, obtained by setting 0 = 1 in (2.1),

X + V X- (2.3)

for {Xn I having a mixed exponential marginal distribution. The first

and crucial step is to determine the distribution of e in terns of the

marginal distribution of {X n; the model (2.1) or (2.3) provides no

guarantee that this can be achieved. The model (2.3) turns out to be very
r

tractable, while still preserving a geometric a correlation structure;

however, it does restrict sample path behavior to a preference for runs

of rising values. Developments of the model in Section 5, 6 and 7 to

both higher order autoregressive and higher order moving average dependency

overcome this effect to a considerable degree; the more general model (2.2) with

mixed exponential marginals has been found to be very limited by tractability.

The marginal distribution function for the mixed exponential vari-

ables {Xn I will be denoted by Fx) where

1 - F(x) = i1e + T2e (2.4)

and "1' 2 > 0, rl + r2 = 1 and VI' P2 2 0' 01 # P2; since rI' 2 > 0 and

Pl 0 V2 we are considering only a convex mixed exponential and not including the

ordinary exponential.

Equations (2.3) and (2.4) constitute a model which will be called

NMEAR(l), synonymous for 'new mixed-exponential first-order autoregressive

process". The necessary choice for the distribution of E is given in Section 3.
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A mixed exponential random variable with distribution function

given by (2.4) will be denoted by ME(II;,172,12); it can be usefully
written 

as

X = KE' (2.5)
n n n

where P(Kn f 1i) f 1 - P(Kn = V2) f l and E is a unit exponentialn n

random variable. The customary measure of its dispersion relative to an

exponential variable is the coefficient of variation C(X) and

2 2 ~ ~~ 2 1/2

sd(X) 11 22 1 2(1-2
C(X) = sd i E( E ((iXr 1 + P2 r2 ) (2.6)

This is always greater than one, its value in the exponential case.

3. The Innovation Process for the NMEAR(l) Process

To establish the existence and distributional form of the innovation

sequence Sn in (2.3) we prove the following result:

Theorem. For 0 < a < 1 the stationary Markovian sequence {X I defined by-- n

(2.3) has a convex mixed exponential marginal distribution (2.4) if and only

if the i.i.d. sequence {F I has the convex mixed exponential distributionn

function F (x) given by

1 - F Wx n r1e- + n 2 e 2(x > 0 ) , (3.1)

where 1l' q2 > 0, f 1 + n2  1, Y1 9 Y2 > 0 and

= 1V J1 + 72P2 ; (3.2)

Y' 92 = + -1 + I[(ii + P _ )2 _ 4(i-c)pi1 2  ; (3.3)

Y0 = '2pl + ri2 ; 
(3.4)

S(y-YO)/(y1 -y2 ); n 2 = (y 2 -yo)/(y 2 -y 1 ) (3.5)

To prove the Theorem we need the following preliminary result:

3



Lem For 0 a < 1 and 0O< w <l

We have 61 + )12~ - p - 4(1-a) P 1 iP2 > {P1i + V2 - (2-a)ii2 > 0 (3.6)

(011 + P12 (2 a)i} 2 Gil1 + 112 - al)- 4 (1-ci) (p + P12 - ap1)11 + 4(1-a) 11

and substituting this into the left-hand side of (3.6) and cancelling like

terms, the ineqjuality (3.6) is seen to be equivalent to

P( 12 )> P l"2 + P1 or hIi + V 2 - 1j > 11 1 P 2'

Using (3.2) for vi we get

[ 1 11 + (l-wT1 ) 112 11V 1 + 1 - (7r 1 11 1 + (1-7r 1)12)] >1P2

or

which is true by assumption. Thus the Lemma is proved.

r Proof of the Theorem

For the stationary sequence given by (2.3) we define

x~t W E{exp(-tx)l, (t) =Efexp(-tc)), (3.7)

so that transforming both sides of (2.3) gives

*(t) = /a ~xt/~ (t) + (1-at)} .(3.8)

With *X(t) -(1 + Y~t)/{(1 + )11t)(1 + 112t)) from (2.4), (3.8) yields k
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,,la

*(t) - (1 + Yot)/{l + 01 + V2- c)t + (l-a)p 1V2t21. (3.9)

The reciprocal roots of the quadratic denominator are given by (3.3) and are

real by the Lemma; furthermore they are distinct and nonnegative since

> 0. A partial fraction expansion of (3.9) then gives

= nl(l + Ylt) + n2 (l + y2t) • (3.10)

This inverts to the required mixed exponential distribution provided that

the weights n1  and 12  are both positive and sum to one; the latter is

clearly true from (3.5). Now n > 0 requires, from (3.5),that y1 > Y0'

and n2 > 0 requires that Y2 < y0 . The first of these is equivalent

to

1 +12 +/r(P.+.. - c)2!2 { +  -
+ 

VL[(fl 
+ 12 - 2 -4ie ] > i1 + 112 - 11

or

[( + 12 - 2 - 4(1-a)p11 2  > Pi + 12 - (2-a)p (3.11)

and the second to

2/{(UI + 12 - av) -
4 (I-)u IP21 > - I + 112 - (2-a)p} (3.12)

Squaring (3.11) and (3.12) show that the condition for y > Y and

y2 < yo is just the condition proved in the Lemma. The key requirement

is that w should be a non-zero probability.

4. Utility of the Theorem

(i) Note that the required distribution for the i.i.d. c 's is
n

again the convex mixed exponential; the E' s can then be generated asn

E n L E (4.1)

n nn

where P(L my 1) 1- P(L y nI and En is a unit-mean exponential.

Thus the model (2.3) gives a means of probabilistically transforming an i.i.d.

exponential sequence into a first order autoregressive Markov mixed exponential

5



rsequence with autocorrelations p r - .I ,{ n  r ~ ~,

ME( ;2 2 ) random variables. Since the process is Markovian it is easy

to show that setting X0  to be a HE(71 ,1l;Tr2,PV2 ) random variable independent

of Ci,12 ,... makes the process {Xn, n = 1,2,...l stationary. Finally it

is easy to see that the regression of Xn  on X 1 is linear; from (2.3)

E(XnIXn-x) - E(cn) + ax.
n n-l n

(ii) The theorem also holds when the marginal distribution of X

is the zero-jump exponential. In our notation, let VI = 0 and p2 = P '

so there is a probability ni1 that X - 0. This structure is related to the

queuing situation where the waiting time can be either zero when no customer

is being served, or an exponential length of time when the server is already

busy. The theorem gives the following form of e
n

U I- 2)- E n  W.p. (l-a)r 2 /(l-ar 2 )

En = " (4.2)

0 w. p. 7i/(-2)

Thus the en variable also has a zero-jump exponential distribution.

(iii) There are two cases in which a mixed exponential marginal

distribution ME(wI,i 1l;it 2 ,P2) of {X} can reduce to a single exponential

distribution; these are when U1 = P2 and when either TI or 12 is zero.

Neither case is covered by the theorem, but each can be treated directly

from the model (2.3). With v as the mean of the exponential {X I
n

sequence, {e n  is an i.i.d. exponential sequence with mean (1-)p. This

situation is the TEAR(l) process studied in Lawrance and Lewis (1981).

5. Mixed Exponential Moving Average Processes

It is possible to think of (2.3) and its mixed exponential solution

as a way of combining independent ME(IY Iy;n2,Y2) and ME(Tlj, I;Tr2 ,12)

variables into another ME(fr1,uI;7r2, 2 ) variable. This key result allows

the constructing (cf. Lawrance and Lewis, 1977) of a first order moving

average process
6



X -LE...... .VK E ._ I
X n n n i KnEi n = 0, + 1, + 2, (5.1)

where Vn, Kn  and Ln are defined at (2.2), (2.5) and (4.1), respectively.

The dependency parameter is a. By the results of Section 3, X will haven

the ME(7rl, 1l;7r2 ,P2) distribution (2.4), but the dependency will be that of

a first order moving average process; the model will be denoted as NMEMA(1).

The moving average aspect is clear because Xn  and Xn+I have just En

in common while Xn  and X n+r(r > 1) will have no E 's in common and thus

be independent. However, the NMEMA(1) process has a very limited range of

correlations; corr(X n,Xn+1 ) is easily derived as

Pl= (l-a)G(Wi I + )2 /22 )2[7iP + 12 2 (5.2)

= -- )/CX •(5.3)

The a(l-a) is always less than one-fourth and the coefficient of variation

C(X) of the mixed exponential distribution is always greater than one; thus

an overall bound below one-fourth is implied. Note that the maximum allowable

value of P1  decreases as C(X) increases, i.e. as the dispersion of X

relative to an exponential random variable for which C(X) = 1, increases. A

stationary sequence is clearly obtained for n = 1,2,... by starting the

moving average over E0, El,...

6. Higher-Order Autoregressive Mixed Exponential Models

Although it is possible to construct higher-order analogs of the

autoregressive equation (2.1), as in Lawrance and Lewis (1980), a simple

p-th order extension of the model (2.3) is obtained by letting Xn_1  be a

probability mixture of Xn_l, ... Xn-p . If the X n's are marginally

ME(wlVl;'2,2 ) then this mixture will be ME( U 1 ; 2t12 ) also, and the

error sequence cn in the autoregressive extension

7



FIRM
0 w.p. 1- (a +...+ ap)

n n-1 w.p. aI

- + Xn2 w.p. a 2  (6.1)xn nn-

X w.p. an-p p

is given as at (3.1) to (3.5) to be ME(nIYI;n 2,Y2) with a replaced by

a1 + a2 +---+ a p The autocorrelations now follow pth order linear, constant

coefficient difference equations paralleling those of the standard auto-

regressive models.

The second-order situation NMEAR(2) is probably as high as one

would want to go in modelling data, in particular to take care of situations

where the marginal distribution is mixed exponential but either the process

is not first order Markov or the sample paths do not tend to run

up. In this case simple computations give

P1 = all(l-a2 ) a, ' P2 = 2 + a 1Pl " (6.2)

The range of p1  and P2 combinations is restricted by 0 < a,, a 2 _ 1, and

a1 + a 2 1 In particular any first autocorrelation p* between zero and one
Is attainable for values of a and a satisfying a 1--a/P*. Since this

1 22 1

is linear, a1  ranges between 0 and p* as a2  ranges from 1 to 0,

where a2 = 0 gives the NMEAR(1) case. Note that = 0 implies that

{X1, X3,...) are independent of {X2, X4,...) and that the odd and the even

sequences are governed by separate but identical first order processes. The

effect, practically, of being able to choose a small a1  for a given P1

will be to adjust run-up behavior.

8



7. Mixed Autoregressive-Moving Average Extensions

It is possible to combine the autoregressive structure (6.1)

and the moving average structure (5.1), as was done by Jacobs and Lewis (1977)

and Lawrance and Lewis (1980) for exponential variables, to obtain a complete

NMEARMA(p,q) process with mixed pth order autoregressive-qth order moving

average correlation structure. This yields a much richer process in terms

of sample-path behavior but since the process is not Markovian it is diffi-

cult to do estimation for the parameters. Thus for the sake of completeness

we consider only the (1,1) model, extending the allowable range of marginal

behavior of the EARMA(l,l) process of Jacobs and Lewis (1977); higher-order

extensions are obvious. The NMEARMA(l,l) process is defined by the equations

Xn =Lt(a)E% +V(a)Yn_
Xn =Ln WEn +Vn WYn-l

n = 0, + 1, + 2, .... (7.1)

Y = L'(a')E + Vn(a')Y
n n n n n-1

where the independent i.i.d. sequences V (a) and V'(cz') haven n

P{V (a) = 11 = a, P{V'(a')= 1 = a'. Also L (a) and L'(a') are inde-
n n n n

pendent with distributions given at (4.1). By the Theorem of Section 3 the

{XnI sequence has a ME(, 2 marginal distribution and a correlation

structure typical of standard ARMA(l,l) models. Other properties of the

model go through in complete analogy with the EARMA(l,l) process. In fact

they will be simpler since that process is based on the EAR(l) model of

Gaver and Lewis (1980) whose zero-defect gives most of the problems in

the limit theorems of Jacobs and Lewis (1977).

8. Modelling and Multivariate Extensions

The mixed exponential time series generated by (2.3) and written,

using (4.1) and (2.5), as
X Xn "L E + VnXn_ 1  n 0, + 1, + 2,...

n n 'nn---

I 9
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is a simple, random linear combination of random variables. As with the

ordinary ARMA models, this makes it ideal for modelling complex systems and

for extension to multivariate time series. The use of EARMA models in

modelling queues has been discussed in Lewis and Shedler (1977) and Jacobs

(1980); the NEAR(l) structure used here is actually better for this purpose

since, unlike the EAR(l) structure, the error term does not disappear.

These applications of the NMEAR(1) process will be discussed elsewhere.

Here we only discuss direct multivariate extensions.

Thus let (E', E") be a bivariate pair with unit exponential
n n

marginals and let X' and X" ben n

X1 = L'E' + V'X',

n nn nn-l
n = 0, + 1, + 2,... (8.1)

X" = L"E" + V"X"
n nn n n-i

where L' is chosen to make X' be ME(-ff',J' 2;ir',PI) and L" is chosen to
Ui n 11 2 n

make X" be ME(T",";,r",jj"). The i.i.d. squences {L',L" and {V,V"
n 1 1 22 n n 'I1

could be dependent within pairs. The sequences {X'} and {X"} will haven

negative cross-correlation if the {E',E") pairs are negatively correlated.

A cross-coupled version of this process, as in Gaver and Lewis (1980), will

create alternating and posibly negative autorcorrelation in X' and X".

Many other multivariate extensions are possible.

9. Discussion

This paper has focussed on replacing the 'Poisson process' assumptions of

exponentiality and independence which are often made in modelling sequences

of identically distributed positive random variables. The exponential

assumption has been replaced by a mixed exponential marginal distribution,

allowing more variable behavior, while the independence has been replaced

10



by autogressive and moving average dependence. Utility of the model has been

referred to in queuing and multivariate situations. Simulation of the model

is possible from easily obtainable i.i.d. exponential sequences.

Various aspects of the model are currently being explored or are open

to development. Extensions incorporating negative dependency can be treated

by the method of cross-coupling used in Gaver and Lewis (1980) and Lawrance

and Lewis (1981). Estimation via the likelihood is available in the pure auto-

regressive models, but the standard assumptions are not satisfied because of

discontinuities in the likelihood. This aspect is investigated in Raftery

(1980a,b) under the assumption of an exponential marginal distribution.

Extensions to nonconvex mixed exponential solutions may be useful when the

marginal distribution is less dispensed relative to the exponential distri-

bution; one such case is from the sum of two independent non-identical expo-

nentials. However, the model has no Gamma solution. A more flexible two-

parameter autoregressive model is available, but its development is limited

by mathematical tractability.
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